JG
HK
KL
AT
FH
KS
MB
NB
YR

Name:	
Class:	12MT2 or 12MTX
Teacher:	

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2012 AP4

YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS

Time allowed - 3 HOURS (Plus 5 minutes reading time)

Directions to candidates

- Attempt all questions
- Approved calculators may be used.
- > Standard Integral Tables are provided at the back of this paper.
- > Write your name and class in the space provided at the top of this question paper

Section I - TOTAL MARKS 10

- > To be answered on the removable answer grid at the back of the exam paper
- Allow about 15 minutes for this section.

Section II - TOTAL MARKS 90

- All answers to be completed on the writing paper provided. Each question is to be commenced on a new page clearly marked Question 11, Question 12, etc on the top of the page. Write your name and class at the top of each page.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- > Allow about 2 hours and 45 minutes for this section

YOUR ANSWERS WILL BE COLLECTED IN ONE BUNDLE. THE MULTIPLE CHOICE SECTION I ON TOP AND THEN WRITTEN ANSWERS TO SECTION II AND THEN THE QUESTION PAPER.

SECTION I 10 MARKS

INSTRUCTIONS

- > Attempt all questions
- > Allow about 15 minutes for this section
- Section I answers are to be completed on the multiple-choice answer sheet attached to the back of this question paper.
- > Select the alternative A, B, C or D that best answers the question
- Evaluate √6 + 7 correct to 3 significant figures.
 - (A) 3.60
 - (B) 3.61
 - (C) 9.44
 - (D) 9.45
- 2. If the roots of the quadratic equation, $3x^2 9x + 5 = 0$, are α and β , then

(A)
$$\alpha\beta = -\frac{5}{3}$$
 and $\alpha + \beta = -3$

(B)
$$\alpha\beta = \frac{5}{3}$$
 and $\alpha + \beta = -3$

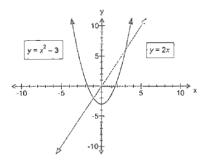
(C)
$$\alpha\beta = \frac{5}{3}$$
 and $\alpha + \beta = 3$

(D)
$$\alpha\beta = 3$$
 and $\alpha + \beta = \frac{5}{3}$

- A parabola has as its focus (4,8) and directrix y = -2. Find the coordinates of the vertex.
 - (A) (4,3)
 - (B) (8,1)
 - (C) (2, 8)
 - (D) (1,8)
- Solve the pair of simultaneous equations.

$$3x + y = 3 \tag{}$$

$$5x + 2y = 4$$

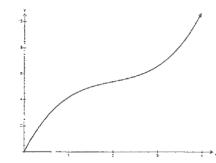

(A)
$$x = 2$$
 and $y = -3$

(B)
$$x = 2$$
 and $y = 3$

(C)
$$x = 4$$
 and $y = -3$

(D)
$$x = 4$$
 and $y = 3$

5. The shaded region shown in the diagram below is bounded by the functions, $y = x^2 - 3$ and y = 2x.


Which of the following is used to calculate the area of the shaded region

- (A) $\int_{-1}^{3} (x^2 3 2x) dx$
- (B) $\int_{-1}^{3} (x^2 3 + 2x) dx$
- (C) $\int_{-1}^{3} (2x x^2 3) dx$
- (D) $\int_{-1}^{3} (2x x^2 + 3) dx$
- 6. Evaluate

$$\sum_{r=3}^{5} (2r + 4)$$

- (A) 24
- (B) 36
- (C) 50
- (D) 72
- 7. Solve |2a+7| > 9
 - (A) a > -8, a < 1
 - (B) a < -8, a > 1
 - (C) a > -8 and a < 1
 - (D) a < -8 and a > 1

- 8. If $\ln g = 5$ and $\ln h = 9$ find the value of $\ln(gh^2)$
 - (A) 6.003887067
 - (B) 23
 - (C) 86
 - (D) 90
- 9. For the part of the function which is shown, which of the following properties are true?

- (A) f'(x) > 0 and f''(x) > 0
- (B) $f(x) \ge 0$ and f'(x) > 0
- (C) f'(x) < 0 and $f''(x) \neq 0$
- (D) $f(x) \ge 0$ and f''(x) > 0
- 10. The equation of any line that passes through the point of intersection of the lines, 3x + 2y + 1 = 0 and 5x + y + 3 = 0, can be written in the form

$$3x + 2y + 1 + k(5x + y + 3) = 0$$

Using this equation, an expression for the gradient of such a line is

- (A) $\frac{8k}{3}$
- (B) $\frac{-8k}{3}$
- $(C) \quad \frac{3+5k}{2+k}$
- D) $-\frac{3+5k}{2+k}$

SECTION II 90 MARKS

INSTRUCTIONS

- Answer all questions on the writing paper provided Allow about 2 hours and 45 minutes for this section
- Begin each question on a new page. Show all necessary working.

Question 11	(15 marks) BEGIN A NEW PAGE	Marks
(a)	Simplify $\frac{x^2 + 10x + 21}{3x^2 - 27}$	2
(b)	(i) Show that the sequence below is arithmetic 4, 9, 14, 19,	1
	(ii) Hence find the sum of the first 100 terms of the series	t
(c)	If $\frac{4}{\sqrt{2}+1} = a\sqrt{2} - b$, find the values of a and b.	2
(d)	Find the equation of the tangent to the curve $y = x^2 - 4$ at the point where $x = 2$. Express your answer in gradient intercept form.	3
(e)	The points A(2,0), B(6,2) and C(7,0) lie on a number plane.	
	(i) Draw a neat labelled diagram that shows this information.	1
	(ii) Find the gradient of side AB and the gradient of side BC.	2
	(iii) Explain why $\triangle ABC$ is a right angled triangle.	1
	(iv) Hence or otherwise, find the area of $\triangle ABC$.	2

Question 13	2 (15 marks) BEGIN A NEW PAGE	Marks
(a)	Evaluate $\int_1^3 (2x^3 - 9) dx$	2
(b)	What is the exact value of $\cos \frac{\pi}{4} + \sin \frac{\pi}{3}$? Answer as a single fraction.	2
(c)	Solve $5\cos\alpha = -4$ where $0 \le \alpha \le 2\pi$. Answer correct to 2 decimal places.	2
(d)	In the diagram below, the circle $x^2 + y^2 = 4$ and the line $y = \sqrt{3}x$ are shown. The point $B(2,0)$ is one of the x-intercepts of the circle and the point A is the point of intersection of the line and circle, as shown on the diagram.	
	(i) Show that $\angle AOB = \frac{\pi}{3}$.	1
	(ii) Hence find the area of sector AOB.	I
	(iii) Find the perimeter of sector AOB.	1
(e)	Differentiate	
	i) cos ⁴ x	1
	ii) $x^2 \tan x$	1
(f)	Find the area bounded by the x-axis and one period of the curve $y = \sin x$.	2
(g)	Sketch the region $y > x^2$ and $y < 4$.	2

Question 13 (15 marks) BEGIN A NEW PAGE Marks

(a) An annulus is a 2 dimensional shape formed when a small circle is removed from the centre of a larger circle. In the diagram the radius of the inner circle is Rcm and the radius of the outer circle is 1 cm larger, that is (R+1)cm.

- (i) Show that the area, A, of the annulus can be given by $A = 2\pi R + \pi$.
- (ii) Find $\frac{dA}{dR}$
- (iii) The radius of the inner circle is increasing at a rate of 2cm/s. Find the rate of increase of the area.
- (b) During construction of a building the height of the building, is given by the equation $H = t (t 10)^2 + 100$, where H is measured in metres and t is the number of months since construction began.

Determine the rate that the height is increasing after 3 months.

- (c) A particle is subjected to external forces, such that its displacement, x, is given by the equation $x = 4t^3 3t$, where displacement is given in metres and time in seconds.
 - (i) Find expressions for the particle's velocity, x, and acceleration, x.
 - (ii) Find the acceleration of the object at t = 5 seconds.
 - (iii) Find the time when the object is stationary and its position at this time.
 - iv) When is the particle accelerating in the positive direction?

Question 13 continues next page

Question 13 continued

- (d) The velocity, $\dot{x} m/s$, of an object is given by the equation, $\dot{x} = 5t + 11$.
 - (i) Find an equation for the displacement of the object if it has an initial displacement of -8 m.
 - (ii) Hence find its displacement after 10 seconds.

Page 7

2

2

1

2

2

1

2

Page 6

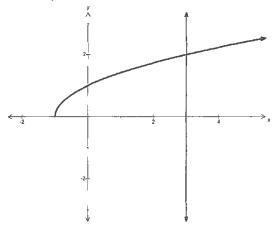
Question 1	4 (15 marks) BEGIN A NEW PAGE	Marks
(a)	Differentiate with respect to x .	
	$(i) y = e^{2x}$	1
	(ii) $y = (e^{x^2} - 7)^4$	2
	(iii) $y = \ln \sqrt{3x - 9}$	2
	(iv) $y = \log_4 5x$	2
(b)	At the start of January 2008, Jin placed a number of fish in the dam on her farm. Over time the number of fish increases such that the rate of change of the population, $\frac{dP}{dt}$, is proportional to the population, P . That is $\frac{dP}{dt} = kP$, where k is a positive constant.	
	(i) Show that an expression for the population can be written in the form $P = Ae^{kt}$.	1
	(ii) If Jin initially placed 10 fish in the dam, find A.	1
	(iii) At the end of 2009, there were 300 fish. Find the value of k, correct to 3 significant figures.	2
	(iv) Hence, estimate to the nearest 1000, the number of fish that will be in the dam at the end of 2012.	1
(c)	Evaluate $\int_{1}^{2} \frac{10}{5x+8} dx$. Leave your answer as an exact value.	3

	Question 15	i (15 n	narks) BEGIN A NEW PAGE	Mark
	(a)	he i of \$	vor took out a loan of \$15000 to buy a car. Each month is charged interest at 1.5% per month and makes a payment M at the end of the month. A_n is the amount that Trevor owes at the end of the n^{th} month.	
		(i)	By first finding expressions for A_1 and A_2 show that $A_3 = 15000 \times 1.015^3 - M(1.015^2 + 1.015 + 1)$.	2
		(ii)	Hence write an expression for A_n .	1
		(iii)	How much does Trevor need to pay each month to repay the loan in 36 months?	2
(b)	(i)	Differentiate $\frac{14}{7x^2+2}$	1
		(ii)	Hence find $\int \frac{14x}{(7x^2+2)^2} dx$	1
(c)	Fort	the function $y = 2x^3 - 3x^2 - 12x + 18$, find	
		(i)	The first and second derivatives.	1
		(ii)	Find any stationary points and determine their nature.	2
		(iii)	Find the point of inflexion.	1
		(iv)	Find the intercepts.	2
		(v)	Hence sketch the function showing these features.	2

Question 16 (15 marks) BEGIN A NEW PAGE

Marks

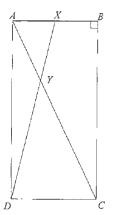
1


2

Page 10

- (a) Evaluate $\int_4^8 \frac{420}{x} dx$ by using Simpson's rule with 2 5 function values.
- (b) The diagram below shows the right hand side of an odd function, f(x).

- Copy or trace the diagram onto your writing paper and complete the left hand side of the graph.
- (ii) Hence evaluate $\int_{-2}^{4} f(x) dx$.
- (c) The area enclosed by the curve $y = \sqrt{x+1}$, the x-axis and the line x = 3, is rotated around the x-axis



Find the exact volume of the solid formed.

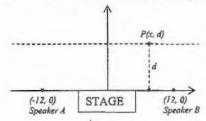
Question 16 continues next page

Question 16 continued

(d) In the diagram below, ABCD is a rectangle. The point X is the midpoint of AB. The line AC meets XD at Y.

- Prove that ΔAXY and ΔCDY are similar.
- (ii) Show that CY = 2AY.

Question 16 continues next page


Not to scale

2

1

Question 16 continued

(e) At a music festival, the speakers at the front are placed on either side of the main stage and are 24 metres apart. The sound mixers are to be a distance of d metres from the stage (in a particular row).

It is known that the total sound, S, from these speakers at point P(x, d) is:

$$S = \frac{100}{d^2 + (x+12)^2} + \frac{100}{d^2 + (x-12)^2}$$

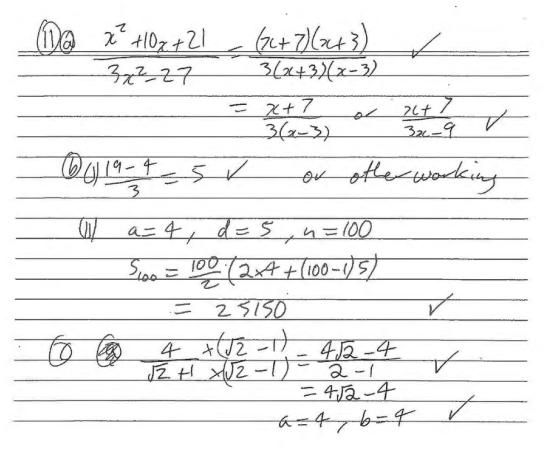
(i) Show that $\frac{ds}{dx} = -200 \frac{M}{Q}$, where $M = (x+12)(d^2 + (x-12)^2)^2 + (x-12)(d^2 + (x+12)^2)^2 \text{ and }$ $Q = (d^2 + (x+12)^2)^2(d^2 + (x-12)^2)^2.$

(ii) By noting that:

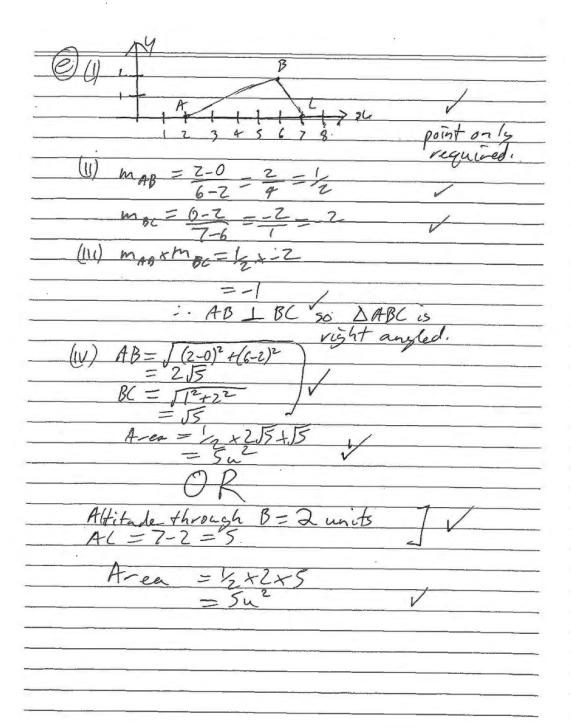
$$M = 2x(x^2 + 144 + d^2 + 24\sqrt{144 + d^2})(x^2 + 144 + d^2 - 24\sqrt{144 + d^2}),$$

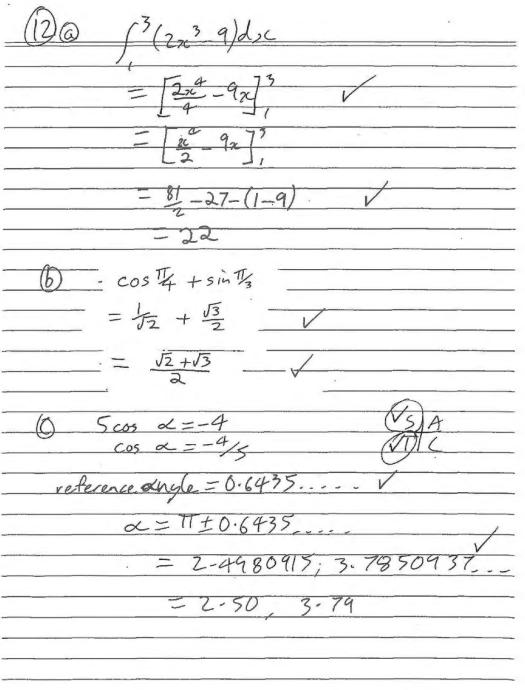
use $\frac{dS}{dx}$ to show that Mario the sound mixer, who moves along a row 20 metres from the stage, measures the sound to be at a maximum when in line with the centre of the stage.

(iii) Another sound mixer (Aaron) decides it may be better to be closer to the stage. Aaron moves along a row 5 metres from the stage.


Describe how the sound level changes for Aaron as he moves along the row. Give clear reasons for your answer.

END OF PAPER


MC		2012 Mattematics 2 Unit AP4
1 0	6 B	
2 C 3 A	8 B	
4 A 5 D	10 p	
	-	
		· -1-
		<u> </u>


2

2

dy - 2 > c d>c.
dre.
at x = 2 $m = 2+2$
m = 2+2 $= 4$
<u> </u>
=0
4-0=4(2-2)
y=4x-8
·
·

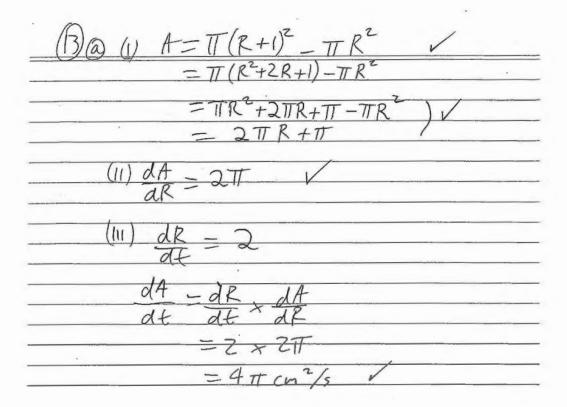
this line required -LAOB = T/3 question. ISE d (cos >c)4 temwritten in any d >C ton.

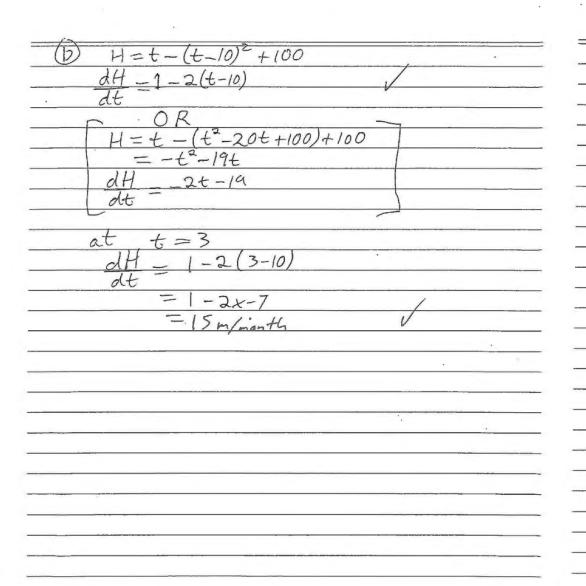
= x sec x + 2 x tanx

ISE

$\Theta A = 2 \int_{0}^{\pi} \sin x dx$
= 2 [-cosz 7 ^{tt}
= 2 (11)
$=4u^{2}$
Note: It is also correct
to start the period at a different place
eg 2 sinzedx
9
-2 2
make region shirled is enclosed
lmak region shaded is enclosed by line & purabola. Ind mak dotted boundary and at least one of the xi coord' of point of intersection.
at least one of the xi coord'

Marking guidelines.

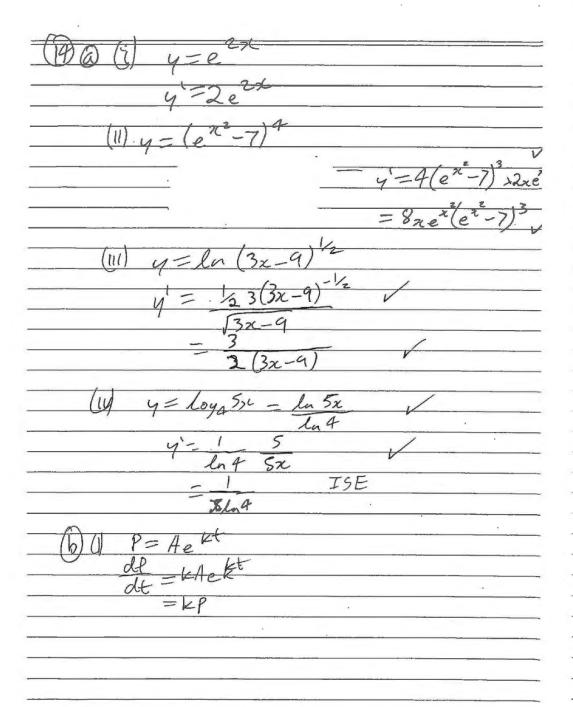

Question 12.


b)
$$\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}$$
 $\sqrt{2 + \frac{1}{3}}$ $\sqrt{2 + \frac{1}{3}}$

c)
$$d = 2.50$$
 or 3.79 only $\sqrt{}$

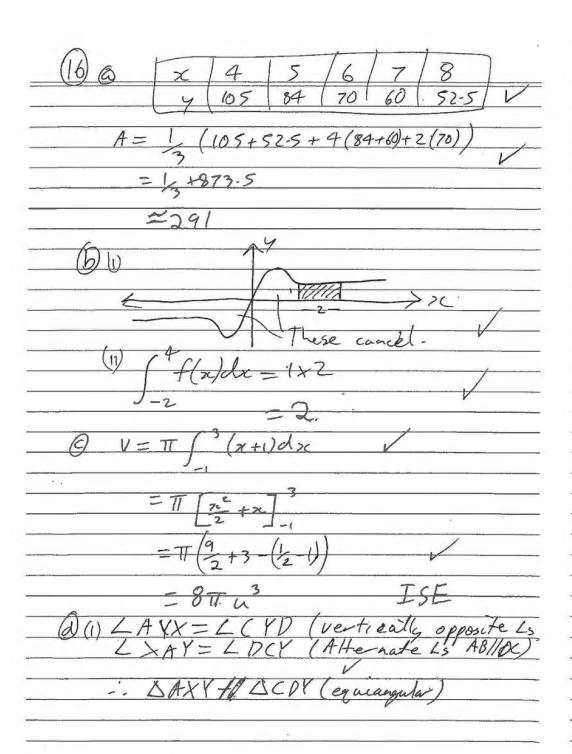
Must show

 2.50 , $2T - 2.50$ to get the 2^{nd} mark.




```
z=4+3-3+
(1) z=12t2-3
   i= 24t
   At t=5
      = 120 m/s2
     4t^2 - 1 = 0

4t^2 = 1


t^2 = 1/4
   stationary at t= 12s at -In
```


(11) at t=0 P=10	
10=Ae° A=10 V	
(iii) P=100 kt	
$300 = 10e^{-30}$ $30 = 0^{2k}$	00
2k = ln 30 $k = ln 30$	
= 1-7005996 = 1-70	691,
$(IV) t = 5$ $P = 10 \times e^{1.70 \times 5} OR$	2730 75
= 49147-6884	1-30 +5 P=10×e = 49295 = 99000
accept eitle.	using exact
$6) \int_{1}^{2} \frac{10}{5\pi t^{8}} d\pi = 2 \int_{1}^{2} \frac{5}{5\pi t^{8}}$	dac /
= 2 Lln(s	x+8)
- 2 ln (!	- Ln 13)

35 $A_1 = 15000 (1.015) - M$ Az = (15000 (1.015) - M) 1.015 = $15000(1.015)^2 - m(1.015) - M$ = $15000(1.015)^2 - m(1.015 + 1)$ A3 = (15000(1.015)2 - M(1.015+1))1.015 - M = 15000 (1.015)3- M(1.0152+1.015+1) An = 15 000 (1.015) n - M (1+1.015+ + (0.015) n - M (1.015) n - M (1.015) - M (1.015) Age o loan will be repaid in 15000 (1.015)36_ M (1+1.015+.... +1.01535 1.015 -1 15000 (1.015)36 0.015 1.0153 AHI for CAM -> incorrect formula with full working shown. M = 542. 185933 M= \$542.29 Common mistake 0 = 15000 x1-012 30 - M(1012 -1) M= \$562.31. Anlany x 14x (marks not awarded for -(x 14(722+2) i) d (14 (7x2+2) this (me) - 14x 14x (7x2+2)2 (1) -1962 $(7x^2+2)^2$ -14x14x (7)(2+2)2 gnove c

(C) $y = 2x^3 - 3x^2 - 12x + 18$	
(1) $\frac{dy}{dx} = 6x^2 - 6x - 12$ $\frac{d^2y}{dx^2} = 12x - 6$ $\frac{d^2y}{dx^2} = 12x - 6$	6~ (I)
(i) $dy=0$ $6\pi e^{2}-6x-12=0$ $x^{2}-x-2=0$ $(x-2)(x+1)=0$ $x=2,-1$	**************************************
When $x=2$ $\frac{d^2y}{dx^2} = 24-6=18 > 0$	
x=-1 d2y = -12-6=-18<0:	max y=25
minimum Stat. pt at (2, 2) c	and maximum stat pt at (-1,25)
(i) $d^2y = 0$ $12x - 6 = 0$ When $x = \frac{1}{2}$	$= \frac{1}{2} y = 2(\frac{1}{2})^3 - 3(\frac{1}{2})^4 - 12(\frac{1}{2}) + 18$ $y = 10^{3/4} \text{Affice}$
Test $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$y = 10^{3/4}$ $\frac{y}{\sqrt{2}} = 10^{3/4}$ in concentry of inflexion cut $(\frac{1}{2}, \frac{11}{2}, \frac{11}{2})$ $(\frac{1}{2}, \frac{23}{2})$
) x ortercepts y=0 0=2x3-3x2 _12x+18	y intercept x=0
$0 = x^2(2x-3) - 6(2x$	-3) y=18
$0 = (2x-3)(x^2-6)$	<- must have all 3
· · · · · · · · · · · · · · · · · · ·	Z most rave at s
	
) 18 (4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AS PER ORIGINAL SOLUTIONS * If pronounced MAZONTAL point of Inflexion drawn -> AWI only
-	MY CHIMIN -> AMI ONLY

$$\begin{array}{c|cccc} (II) & AX & - I - AY \\ \hline & QC & 2 & CY \end{array}$$

CY=ZAY

$$S = \frac{100}{d^2 + (x+12)^2} + \frac{100}{d^2 + (x-12)^2}$$

$$S = 100[d^2 + (x+12)^2]^{-1} + 100[d^2 + (x-12)^2]^{-1}$$

$$\frac{dS}{dx} = -100[d^2 + (x+12)^2]^{-2} \times 2(x+12)$$

$$-100[d^2 + (x-12)^2]^{-2} \times 2(x-12)$$

$$= \frac{-200(x+12)}{[d^2 + (x+12)^2]^2} + \frac{-200(x-12)}{[d^2 + (x-12)^2]^2}$$

$$= \frac{-200[(x+12)[d^2 + (x-12)^2]^2 + (x-12)[d^2 + (x+12)^2]^2}{[d^2 + (x+12)^2]^2[d^2 + (x-12)^2]^2}$$

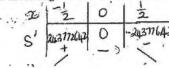
$$= -200\frac{M}{Q}, \text{ as required}$$

(ii) The maximum sound that Mario experiences occurs when $\frac{dS}{dc} = 0$.

$$\therefore -200 \frac{M}{Q} = 0$$

i.e. when M=0:

$$2x(x^{2} + 144 + d^{2} + 24\sqrt{144 + d^{2}})$$


$$\times (x^{2} + 144 + d^{2} - 24\sqrt{144 + d^{2}}) = 0$$

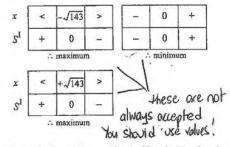
Putting d = 20, :. $d^2 = 400$

i.e.
$$2x(x^2 + 544 + 24\sqrt{544})(x^2 + 544 - 24\sqrt{544}) = 0$$

The only possibility is if x = 0 as both second and third expressions are positive.

When x = 0, the sound is minimum or maximum, however on checking: MUSTUSE VALUES

 \therefore Sound level is maximum when x=0.


(iii) For Aaron:

$$2x(x^{2} + (144 + 25) + 24\sqrt{169})(x^{2} + 169 - 24\sqrt{169}) = 0$$
$$x = 0, x^{2} + 169 + 24\sqrt{169} = 0$$
$$or x^{2} + 169 - 24\sqrt{169} = 0$$

$$x = 0$$
 or $x^2 = 24 \times 13 - 169$
 $x^2 = 143$

$$x = \pm \sqrt{143}$$

Checking each of these:

Hence, for Aaron the sound level will peak at two locations, when $x = \pm \sqrt{143} = \pm 11.96$ m